FGF-1 and proteolytically mediated cleavage site presentation influence three-dimensional fibroblast invasion in biomimetic PEGDA hydrogels.
نویسندگان
چکیده
Controlled scaffold degradation is a critical design criterion for the clinical success of tissue-engineered constructs. Here, we exploited a biomimetic poly(ethylene glycol) diacrylate (PEGDA) hydrogel system immobilized with tethered YRGDS as the cell adhesion ligand and with either single (SSite) or multiple (MSite) collagenase-sensitive domains between crosslinks, to systematically study the effect of proteolytic cleavage site presentation on hydrogel degradation rate and three-dimensional (3-D) fibroblast invasion in vitro. Through the incorporation of multiple collagenase-sensitive domains between cross-links, hydrogel degradation rate was controlled and enhanced independent of alterations in compressive modulus. As compared to SSite hydrogels, MSite hydrogels resulted in increased 3-D fibroblast invasion in vitro, which occurred over a wider range of compressive moduli. Furthermore, encapsulated soluble acidic fibroblast growth factor (FGF-1), a potent mitogen during processes such as vascularization and wound healing, was incorporated into SSite and MSite PEGDA scaffolds to determine its in vitro potential on fibroblast cell invasion. Hydrogels containing soluble FGF-1 significantly enhanced 3-D fibroblast invasion in a dose-dependent manner within the different types of PEG matrices investigated over a period of 15 days. The methodology presented provides flexibility in designing PEG scaffolds with desired mechanical properties, but with increased susceptibility to proteolytically mediated degradation. These results indicate that effective tuning of initial matrix stiffness and hydrogel degradation kinetics plays a critical role in effectively designing PEG scaffolds that promote controlled 3-D cellular behavior and in situ tissue regeneration.
منابع مشابه
Dual-stage growth factor release within 3D protein-engineered hydrogel niches promotes adipogenesis.
Engineered biomimetic microenvironments from hydrogels are an emerging strategy to achieve lineage-specific differentiation in vitro. In addition to recapitulating critical matrix cues found in the native three-dimensional (3D) niche, the hydrogel can also be designed to deliver soluble factors that are present within the native inductive microenvironment. We demonstrate a versatile materials a...
متن کاملCell migration through defined, synthetic ECM analogs.
We have developed synthetic hydrogel extracellular matrix (ECM) analogues that can be used to study mechanisms involved in cell migration, such as receptor-ligand interactions and proteolysis. The biomimetic hydrogels consist of bioinert polyethylene glycol diacrylate derivatives with proteolytically degradable peptide sequences included in the backbone of the polymer and adhesive peptide seque...
متن کاملCell-mediated remodeling of biomimetic encapsulating hydrogels triggered by adipogenic differentiation of adipose stem cells
One of the most common regenerative therapies is autologous fat grafting, which frequently suffers from unexpected volume loss. One approach is to deliver adipose stem cells encapsulated in the engineered hydrogels supportive of cell survival, differentiation, and integration after transplant. We describe an encapsulating, biomimetic poly(ethylene)-glycol hydrogel, with embedded peptides for at...
متن کاملQuantitative Study of the Effects of PEG Substrate Physical Properties and Degradation Kinetics on Fibroblast Cell Migration
Project Description: Engineering functional tissue replacements relies on a variety of inputs that must be provided to cells with spatial and temporal control in order to direct tissue development. These inputs include insoluble extracellular matrix (ECM) proteins, as well as ECM physical properties which are important for meditating cell adhesion, proliferation and migration. While naturally d...
متن کاملProtease degradable electrospun fibrous hydrogels
Electrospun nanofibres are promising in biomedical applications to replicate features of the natural extracellular matrix (ECM). However, nearly all electrospun scaffolds are either non-degradable or degrade hydrolytically, whereas natural ECM degrades proteolytically, often through matrix metalloproteinases. Here we synthesize reactive macromers that contain protease-cleavable and fluorescent ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta biomaterialia
دوره 8 6 شماره
صفحات -
تاریخ انتشار 2012